
The picture can't be displayed.

Database System Concepts, 5th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

Chapter 3: SQL

©Silberschatz, Korth and Sudarshan3.2Database System Concepts, 5th Ed., June 2006

Chapter 3: SQL

 Data Definition

 Basic Query Structure

 Set Operations

 Aggregate Functions

 Null Values

 Nested Subqueries

 Complex Queries

 Views

 Modification of the Database

 Joined Relations**

©Silberschatz, Korth and Sudarshan3.3Database System Concepts, 5th Ed., June 2006

History

 IBM Sequel language developed as part of System R project at the
IBM San Jose Research Laboratory

 Renamed Structured Query Language (SQL)

 ANSI and ISO standard SQL:

 SQL-86

 SQL-89

 SQL-92

 SQL:1999 (language name became Y2K compliant!)

 SQL:2003

 Commercial systems offer most, if not all, SQL-92 features, plus
varying feature sets from later standards and special proprietary
features.

 Not all examples here may work on your particular system.

©Silberschatz, Korth and Sudarshan3.4Database System Concepts, 5th Ed., June 2006

Data Definition Language

 The schema for each relation.

 The domain of values associated with each attribute.

 Integrity constraints

 The set of indices to be maintained for each relations.

 Security and authorization information for each relation.

 The physical storage structure of each relation on disk.

Allows the specification of not only a set of relations but also
information about each relation, including:

©Silberschatz, Korth and Sudarshan3.5Database System Concepts, 5th Ed., June 2006

Domain Types in SQL

 char(n). Fixed length character string, with user-specified length n.

 varchar(n). Variable length character strings, with user-specified maximum
length n.

 int. Integer (a finite subset of the integers that is machine-dependent).

 smallint. Small integer (a machine-dependent subset of the integer
domain type).

 numeric(p,d). Fixed point number, with user-specified precision of p digits,
with n digits to the right of decimal point.

 real, double precision. Floating point and double-precision floating point
numbers, with machine-dependent precision.

 float(n). Floating point number, with user-specified precision of at least n
digits.

 More are covered in Chapter 4.

©Silberschatz, Korth and Sudarshan3.6Database System Concepts, 5th Ed., June 2006

Create Table Construct

 An SQL relation is defined using the create table command:

create table r (A1 D1, A2 D2, ..., An Dn,
(integrity-constraint1),
...,
(integrity-constraintk))

 r is the name of the relation

 each Ai is an attribute name in the schema of relation r

 Di is the data type of values in the domain of attribute Ai

 Example:

create table branch
(branch_name char(15) not null,
branch_city char(30),
assets integer)

©Silberschatz, Korth and Sudarshan3.7Database System Concepts, 5th Ed., June 2006

Integrity Constraints in Create Table

 not null

 primary key (A1, ..., An)

Example: Declare branch_name as the primary key for branch
.

create table branch
(branch_name char(15),
branch_city char(30),
assets integer,
primary key (branch_name))

primary key declaration on an attribute automatically ensures
not null in SQL-92 onwards, needs to be explicitly stated in
SQL-89

©Silberschatz, Korth and Sudarshan3.8Database System Concepts, 5th Ed., June 2006

Drop and Alter Table Constructs

 The drop table command deletes all information about the dropped
relation from the database.

 The alter table command is used to add attributes to an existing
relation:

alter table r add A D

where A is the name of the attribute to be added to relation r and D
is the domain of A.

 All tuples in the relation are assigned null as the value for the
new attribute.

 The alter table command can also be used to drop attributes of a
relation:

alter table r drop A

where A is the name of an attribute of relation r

 Dropping of attributes not supported by many databases

©Silberschatz, Korth and Sudarshan3.9Database System Concepts, 5th Ed., June 2006

Basic Query Structure

 SQL is based on set and relational operations with certain
modifications and enhancements

 A typical SQL query has the form:

select A1, A2, ..., An
from r1, r2, ..., rm
where P

 Ai represents an attribute

 Ri represents a relation

 P is a predicate.

 This query is equivalent to the relational algebra expression.

 The result of an SQL query is a relation.

))((21,,, 21 mPAAA rrr
n

©Silberschatz, Korth and Sudarshan3.10Database System Concepts, 5th Ed., June 2006

The select Clause

 The select clause list the attributes desired in the result of a query

 corresponds to the projection operation of the relational algebra

 Example: find the names of all branches in the loan relation:
select branch_name
from loan

 In the relational algebra, the query would be:

branch_name (loan)

 NOTE: SQL names are case insensitive (i.e., you may use upper- or
lower-case letters.)

 E.g. Branch_Name ≡ BRANCH_NAME ≡ branch_name

 Some people use upper case wherever we use bold font.

©Silberschatz, Korth and Sudarshan3.11Database System Concepts, 5th Ed., June 2006

The select Clause (Cont.)

 SQL allows duplicates in relations as well as in query results.

 To force the elimination of duplicates, insert the keyword distinct after
select.

 Find the names of all branches in the loan relations, and remove
duplicates

select distinct branch_name
from loan

 The keyword all specifies that duplicates not be removed.

select all branch_name
from loan

©Silberschatz, Korth and Sudarshan3.12Database System Concepts, 5th Ed., June 2006

The select Clause (Cont.)

 An asterisk in the select clause denotes “all attributes”

select *
from loan

 The select clause can contain arithmetic expressions involving the
operation, +, –, , and /, and operating on constants or attributes of
tuples.

 The query:

select loan_number, branch_name, amount 100
from loan

would return a relation that is the same as the loan relation, except that
the value of the attribute amount is multiplied by 100.

©Silberschatz, Korth and Sudarshan3.13Database System Concepts, 5th Ed., June 2006

The where Clause

 The where clause specifies conditions that the result must satisfy

 Corresponds to the selection predicate of the relational algebra.

 To find all loan number for loans made at the Perryridge branch with
loan amounts greater than $1200.

select loan_number
from loan
where branch_name = 'Perryridge' and amount > 1200

 Comparison results can be combined using the logical connectives and,
or, and not.

 Comparisons can be applied to results of arithmetic expressions.

©Silberschatz, Korth and Sudarshan3.14Database System Concepts, 5th Ed., June 2006

The where Clause (Cont.)

 SQL includes a between comparison operator

 Example: Find the loan number of those loans with loan amounts between
$90,000 and $100,000 (that is, $90,000 and $100,000)

select loan_number
from loan
where amount between 90000 and 100000

©Silberschatz, Korth and Sudarshan3.15Database System Concepts, 5th Ed., June 2006

The from Clause

 The from clause lists the relations involved in the query

 Corresponds to the Cartesian product operation of the relational algebra.

 Find the Cartesian product borrower X loan

select
from borrower, loan

 Find the name, loan number and loan amount of all customers
having a loan at the Perryridge branch.

select customer_name, borrower.loan_number, amount
from borrower, loan
where borrower.loan_number = loan.loan_number and

branch_name = 'Perryridge'

©Silberschatz, Korth and Sudarshan3.16Database System Concepts, 5th Ed., June 2006

The Rename Operation

 The SQL allows renaming relations and attributes using the as clause:

old-name as new-name

 Find the name, loan number and loan amount of all customers; rename the
column name loan_number as loan_id.

select customer_name, borrower.loan_number as loan_id, amount
from borrower, loan
where borrower.loan_number = loan.loan_number

©Silberschatz, Korth and Sudarshan3.17Database System Concepts, 5th Ed., June 2006

Tuple Variables

 Tuple variables are defined in the from clause via the use of the as
clause.

 Find the customer names and their loan numbers for all customers
having a loan at some branch.

 Find the names of all branches that have greater assets than
some branch located in Brooklyn.

select distinct T.branch_name
from branch as T, branch as S
where T.assets > S.assets and S.branch_city = 'Brooklyn'

Keyword as is optional and may be omitted
borrower as T ≡ borrower T

select customer_name, T.loan_number, S.amount
from borrower as T, loan as S
where T.loan_number = S.loan_number

©Silberschatz, Korth and Sudarshan3.18Database System Concepts, 5th Ed., June 2006

String Operations

 SQL includes a string-matching operator for comparisons on character
strings. The operator “like” uses patterns that are described using two
special characters:

 percent (%). The % character matches any substring.

 underscore (_). The _ character matches any character.

 Find the names of all customers whose street includes the substring
“Main”.

select customer_name
from customer
where customer_street like '% Main%'

 Match the name “Main%”

like 'Main\%' escape '\'

 SQL supports a variety of string operations such as

 concatenation (using “||”)

 converting from upper to lower case (and vice versa)

 finding string length, extracting substrings, etc.

©Silberschatz, Korth and Sudarshan3.19Database System Concepts, 5th Ed., June 2006

Ordering the Display of Tuples

 List in alphabetic order the names of all customers having a loan in
Perryridge branch

select distinct customer_name
from borrower, loan
where borrower loan_number = loan.loan_number and

branch_name = 'Perryridge'
order by customer_name

 We may specify desc for descending order or asc for ascending
order, for each attribute; ascending order is the default.

 Example: order by customer_name desc

©Silberschatz, Korth and Sudarshan3.20Database System Concepts, 5th Ed., June 2006

Duplicates

 In relations with duplicates, SQL can define how many copies of tuples
appear in the result.

 Multiset versions of some of the relational algebra operators – given
multiset relations r1 and r2:

1. (r1): If there are c1 copies of tuple t1 in r1, and t1 satisfies

selections ,, then there are c1 copies of t1 in (r1).

2. A (r): For each copy of tuple t1 in r1, there is a copy of tuple
A (t1) in A (r1) where A (t1) denotes the projection of the single
tuple t1.

3. r1 x r2 : If there are c1 copies of tuple t1 in r1 and c2 copies of tuple
t2 in r2, there are c1 x c2 copies of the tuple t1. t2 in r1 x r2

©Silberschatz, Korth and Sudarshan3.21Database System Concepts, 5th Ed., June 2006

Duplicates (Cont.)

 Example: Suppose multiset relations r1 (A, B) and r2 (C) are as
follows:

r1 = {(1, a) (2,a)} r2 = {(2), (3), (3)}

 Then B(r1) would be {(a), (a)}, while B(r1) x r2 would be

{(a,2), (a,2), (a,3), (a,3), (a,3), (a,3)}

 SQL duplicate semantics:

select A1,, A2, ..., An

from r1, r2, ..., rm
where P

is equivalent to the multiset version of the expression:

))((21,,, 21 mPAAA rrr
n

©Silberschatz, Korth and Sudarshan3.22Database System Concepts, 5th Ed., June 2006

Set Operations

 The set operations union, intersect, and except operate on relations
and correspond to the relational algebra operations

 Each of the above operations automatically eliminates duplicates; to
retain all duplicates use the corresponding multiset versions union all,
intersect all and except all.

Suppose a tuple occurs m times in r and n times in s, then, it occurs:

 m + n times in r union all s

 min(m,n) times in r intersect all s

 max(0, m – n) times in r except all s

©Silberschatz, Korth and Sudarshan3.23Database System Concepts, 5th Ed., June 2006

Set Operations

 Find all customers who have a loan, an account, or both:

(select customer_name from depositor)
except
(select customer_name from borrower)

(select customer_name from depositor)
intersect
(select customer_name from borrower)

 Find all customers who have an account but no loan.

(select customer_name from depositor)
union
(select customer_name from borrower)

 Find all customers who have both a loan and an account.

©Silberschatz, Korth and Sudarshan3.24Database System Concepts, 5th Ed., June 2006

Aggregate Functions

 These functions operate on the multiset of values of a column of
a relation, and return a value

avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

©Silberschatz, Korth and Sudarshan3.25Database System Concepts, 5th Ed., June 2006

Aggregate Functions (Cont.)

 Find the average account balance at the Perryridge branch.

 Find the number of depositors in the bank.

 Find the number of tuples in the customer relation.

select avg (balance)
from account
where branch_name = 'Perryridge'

select count (*)
from customer

select count (distinct customer_name)
from depositor

©Silberschatz, Korth and Sudarshan3.26Database System Concepts, 5th Ed., June 2006

Aggregate Functions – Group By

 Find the number of depositors for each branch.

Note: Attributes in select clause outside of aggregate functions must
appear in group by list

select branch_name, count (distinct customer_name)
from depositor, account
where depositor.account_number = account.account_number
group by branch_name

©Silberschatz, Korth and Sudarshan3.27Database System Concepts, 5th Ed., June 2006

Aggregate Functions – Having Clause

 Find the names of all branches where the average account balance is
more than $1,200.

Note: predicates in the having clause are applied after the
formation of groups whereas predicates in the where
clause are applied before forming groups

select branch_name, avg (balance)
from account
group by branch_name
having avg (balance) > 1200

©Silberschatz, Korth and Sudarshan3.28Database System Concepts, 5th Ed., June 2006

Null Values

 It is possible for tuples to have a null value, denoted by null, for some
of their attributes

 null signifies an unknown value or that a value does not exist.

 The predicate is null can be used to check for null values.

 Example: Find all loan number which appear in the loan relation
with null values for amount.

select loan_number
from loan
where amount is null

 The result of any arithmetic expression involving null is null

 Example: 5 + null returns null

 However, aggregate functions simply ignore nulls

 More on next slide

©Silberschatz, Korth and Sudarshan3.29Database System Concepts, 5th Ed., June 2006

Null Values and Three Valued Logic

 Any comparison with null returns unknown

 Example: 5 < null or null <> null or null = null

 Three-valued logic using the truth value unknown:

 OR: (unknown or true) = true,
(unknown or false) = unknown
(unknown or unknown) = unknown

 AND: (true and unknown) = unknown,
(false and unknown) = false,
(unknown and unknown) = unknown

 NOT: (not unknown) = unknown

 “P is unknown” evaluates to true if predicate P evaluates to
unknown

 Result of where clause predicate is treated as false if it evaluates to
unknown

©Silberschatz, Korth and Sudarshan3.30Database System Concepts, 5th Ed., June 2006

Null Values and Aggregates

 Total all loan amounts

select sum (amount)
from loan

 Above statement ignores null amounts

 Result is null if there is no non-null amount

 All aggregate operations except count(*) ignore tuples with null
values on the aggregated attributes.

©Silberschatz, Korth and Sudarshan3.31Database System Concepts, 5th Ed., June 2006

Nested Subqueries

 SQL provides a mechanism for the nesting of subqueries.

 A subquery is a select-from-where expression that is nested within
another query.

 A common use of subqueries is to perform tests for set membership, set
comparisons, and set cardinality.

©Silberschatz, Korth and Sudarshan3.32Database System Concepts, 5th Ed., June 2006

Example Query

 Find all customers who have both an account and a loan at the bank.

 Find all customers who have a loan at the bank but do not have
an account at the bank

select distinct customer_name
from borrower
where customer_name not in (select customer_name

from depositor)

select distinct customer_name
from borrower
where customer_name in (select customer_name

from depositor)

©Silberschatz, Korth and Sudarshan3.33Database System Concepts, 5th Ed., June 2006

Example Query

 Find all customers who have both an account and a loan at the
Perryridge branch

 Note: Above query can be written in a much simpler manner. The
formulation above is simply to illustrate SQL features.

select distinct customer_name
from borrower, loan
where borrower.loan_number = loan.loan_number and
branch_name = 'Perryridge' and
(branch_name, customer_name) in

(select branch_name, customer_name
from depositor, account
where depositor.account_number =

account.account_number)

©Silberschatz, Korth and Sudarshan3.34Database System Concepts, 5th Ed., June 2006

Set Comparison

 Find all branches that have greater assets than some branch located
in Brooklyn.

 Same query using > some clause

select branch_name
from branch
where assets > some

(select assets
from branch
where branch_city = 'Brooklyn')

select distinct T.branch_name
from branch as T, branch as S
where T.assets > S.assets and

S.branch_city = 'Brooklyn'

©Silberschatz, Korth and Sudarshan3.35Database System Concepts, 5th Ed., June 2006

Definition of Some Clause

 F <comp> some r t r such that (F <comp> t)
Where <comp> can be:

0
5
6

(5 < some) = true

0
5

0

) = false

5

0
5(5 some) = true (since 0 5)

(read: 5 < some tuple in the relation)

(5 < some

) = true(5 = some

(= some) in
However, (some) not in

©Silberschatz, Korth and Sudarshan3.36Database System Concepts, 5th Ed., June 2006

Example Query

 Find the names of all branches that have greater assets than all
branches located in Brooklyn.

select branch_name
from branch
where assets > all

(select assets
from branch
where branch_city = 'Brooklyn')

©Silberschatz, Korth and Sudarshan3.37Database System Concepts, 5th Ed., June 2006

Definition of all Clause

 F <comp> all r t r (F <comp> t)

0
5
6

(5 < all) = false

6
10

4

) = true

5

4
6(5 all) = true (since 5 4 and 5 6)

(5 < all

) = false(5 = all

(all) not in
However, (= all) in

©Silberschatz, Korth and Sudarshan3.38Database System Concepts, 5th Ed., June 2006

Test for Empty Relations

 The exists construct returns the value true if the argument subquery is
nonempty.

 exists r r Ø

 not exists r r = Ø

©Silberschatz, Korth and Sudarshan3.39Database System Concepts, 5th Ed., June 2006

Example Query

 Find all customers who have an account at all branches located in
Brooklyn.

select distinct S.customer_name
from depositor as S
where not exists (

(select branch_name
from branch
where branch_city = 'Brooklyn')
except
(select R.branch_name
from depositor as T, account as R
where T.account_number = R.account_number and

S.customer_name = T.customer_name))

 Note that X – Y = Ø X Y

 Note: Cannot write this query using = all and its variants

©Silberschatz, Korth and Sudarshan3.40Database System Concepts, 5th Ed., June 2006

Test for Absence of Duplicate Tuples

 The unique construct tests whether a subquery has any duplicate
tuples in its result.

 Find all customers who have at most one account at the Perryridge
branch.

select T.customer_name
from depositor as T
where unique (

select R.customer_name
from account, depositor as R
where T.customer_name = R.customer_name and

R.account_number = account.account_number and
account.branch_name = 'Perryridge')

©Silberschatz, Korth and Sudarshan3.41Database System Concepts, 5th Ed., June 2006

Example Query

 Find all customers who have at least two accounts at the Perryridge
branch.

select distinct T.customer_name
from depositor as T
where not unique (

select R.customer_name
from account, depositor as R
where T.customer_name = R.customer_name and

R.account_number = account.account_number and
account.branch_name = 'Perryridge')

 Variable from outer level is known as a correlation variable

©Silberschatz, Korth and Sudarshan3.42Database System Concepts, 5th Ed., June 2006

Derived Relations

 SQL allows a subquery expression to be used in the from clause

 Find the average account balance of those branches where the average
account balance is greater than $1200.

select branch_name, avg_balance
from (select branch_name, avg (balance)

from account
group by branch_name)
as branch_avg (branch_name, avg_balance)

where avg_balance > 1200

Note that we do not need to use the having clause, since we compute
the temporary (view) relation branch_avg in the from clause, and the
attributes of branch_avg can be used directly in the where clause.

©Silberschatz, Korth and Sudarshan3.43Database System Concepts, 5th Ed., June 2006

With Clause

 The with clause provides a way of defining a temporary view whose
definition is available only to the query in which the with clause
occurs.

 Find all accounts with the maximum balance

with max_balance (value) as
select max (balance)
from account

select account_number
from account, max_balance
where account.balance = max_balance.value

©Silberschatz, Korth and Sudarshan3.44Database System Concepts, 5th Ed., June 2006

Complex Queries using With Clause

 Find all branches where the total account deposit is greater than the
average of the total account deposits at all branches.

with branch_total (branch_name, value) as
select branch_name, sum (balance)
from account
group by branch_name

with branch_total_avg (value) as
select avg (value)
from branch_total

select branch_name
from branch_total, branch_total_avg
where branch_total.value >= branch_total_avg.value

©Silberschatz, Korth and Sudarshan3.45Database System Concepts, 5th Ed., June 2006

Views

 In some cases, it is not desirable for all users to see the entire logical
model (that is, all the actual relations stored in the database.)

 Consider a person who needs to know a customer’s name, loan number
and branch name, but has no need to see the loan amount. This person
should see a relation described, in SQL, by

(select customer_name, borrower.loan_number, branch_name
from borrower, loan
where borrower.loan_number = loan.loan_number)

 A view provides a mechanism to hide certain data from the view of
certain users.

 Any relation that is not of the conceptual model but is made visible to a
user as a “virtual relation” is called a view.

©Silberschatz, Korth and Sudarshan3.46Database System Concepts, 5th Ed., June 2006

View Definition

 A view is defined using the create view statement which has the
form

create view v as < query expression >

where <query expression> is any legal SQL expression. The view
name is represented by v.

 Once a view is defined, the view name can be used to refer to the
virtual relation that the view generates.

 When a view is created, the query expression is stored in the
database; the expression is substituted into queries using the view.

©Silberschatz, Korth and Sudarshan3.47Database System Concepts, 5th Ed., June 2006

Example Queries

 A view consisting of branches and their customers

 Find all customers of the Perryridge branch

create view all_customer as
(select branch_name, customer_name
from depositor, account

where depositor.account_number =
account.account_number)

union
(select branch_name, customer_name
from borrower, loan
where borrower.loan_number = loan.loan_number)

select customer_name
from all_customer
where branch_name = 'Perryridge'

©Silberschatz, Korth and Sudarshan3.48Database System Concepts, 5th Ed., June 2006

Views Defined Using Other Views

 One view may be used in the expression defining another view

 A view relation v1 is said to depend directly on a view relation v2 if v2

is used in the expression defining v1

 A view relation v1 is said to depend on view relation v2 if either v1

depends directly to v2 or there is a path of dependencies from v1 to
v2

 A view relation v is said to be recursive if it depends on itself.

©Silberschatz, Korth and Sudarshan3.49Database System Concepts, 5th Ed., June 2006

View Expansion

 A way to define the meaning of views defined in terms of other views.

 Let view v1 be defined by an expression e1 that may itself contain uses
of view relations.

 View expansion of an expression repeats the following replacement
step:

repeat
Find any view relation vi in e1

Replace the view relation vi by the expression defining vi

until no more view relations are present in e1

 As long as the view definitions are not recursive, this loop will
terminate

©Silberschatz, Korth and Sudarshan3.50Database System Concepts, 5th Ed., June 2006

Modification of the Database – Deletion

 Delete all account tuples at the Perryridge branch

delete from account
where branch_name = 'Perryridge'

 Delete all accounts at every branch located in the city ‘Needham’.

delete from account
where branch_name in (select branch_name

from branch
where branch_city = 'Needham')

©Silberschatz, Korth and Sudarshan3.51Database System Concepts, 5th Ed., June 2006

Example Query

 Delete the record of all accounts with balances below the average at
the bank.

delete from account
where balance < (select avg (balance)

from account)

 Problem: as we delete tuples from deposit, the average balance
changes

 Solution used in SQL:

1. First, compute avg balance and find all tuples to delete

2. Next, delete all tuples found above (without recomputing avg or
retesting the tuples)

©Silberschatz, Korth and Sudarshan3.52Database System Concepts, 5th Ed., June 2006

Modification of the Database – Insertion

 Add a new tuple to account

insert into account
values ('A-9732', 'Perryridge', 1200)

or equivalently

insert into account (branch_name, balance, account_number)
values ('Perryridge', 1200, 'A-9732')

 Add a new tuple to account with balance set to null

insert into account
values ('A-777','Perryridge', null)

©Silberschatz, Korth and Sudarshan3.53Database System Concepts, 5th Ed., June 2006

Modification of the Database – Insertion

 Provide as a gift for all loan customers of the Perryridge branch, a $200
savings account. Let the loan number serve as the account number for the
new savings account

insert into account
select loan_number, branch_name, 200
from loan
where branch_name = 'Perryridge'

insert into depositor
select customer_name, loan_number
from loan, borrower
where branch_name = 'Perryridge'

and loan.account_number = borrower.account_number

 The select from where statement is evaluated fully before any of its
results are inserted into the relation (otherwise queries like

insert into table1 select * from table1
would cause problems)

©Silberschatz, Korth and Sudarshan3.54Database System Concepts, 5th Ed., June 2006

Modification of the Database – Updates

 Increase all accounts with balances over $10,000 by 6%, all other
accounts receive 5%.

 Write two update statements:

update account
set balance = balance 1.06
where balance > 10000

update account
set balance = balance 1.05
where balance 10000

 The order is important

 Can be done better using the case statement (next slide)

©Silberschatz, Korth and Sudarshan3.55Database System Concepts, 5th Ed., June 2006

Case Statement for Conditional Updates

 Same query as before: Increase all accounts with balances over
$10,000 by 6%, all other accounts receive 5%.

update account
set balance = case

when balance <= 10000 then balance *1.05
else balance * 1.06

end

©Silberschatz, Korth and Sudarshan3.56Database System Concepts, 5th Ed., June 2006

Update of a View

 Create a view of all loan data in the loan relation, hiding the amount
attribute

create view loan_branch as
select loan_number, branch_name
from loan

 Add a new tuple to branch_loan

insert into branch_loan
values ('L-37‘, 'Perryridge‘)

This insertion must be represented by the insertion of the tuple

('L-37', 'Perryridge', null)

into the loan relation

©Silberschatz, Korth and Sudarshan3.57Database System Concepts, 5th Ed., June 2006

Updates Through Views (Cont.)

 Some updates through views are impossible to translate into
updates on the database relations

 create view v as
select loan_number, branch_name, amount
from loan
where branch_name = ‘Perryridge’

insert into v values ('L-99','Downtown', '23')

 Others cannot be translated uniquely

 insert into all_customer values ('Perryridge', 'John')

 Have to choose loan or account, and
create a new loan/account number!

 Most SQL implementations allow updates only on simple views
(without aggregates) defined on a single relation

©Silberschatz, Korth and Sudarshan3.58Database System Concepts, 5th Ed., June 2006

Joined Relations**

 Join operations take two relations and return as a result another
relation.

 These additional operations are typically used as subquery
expressions in the from clause

 Join condition – defines which tuples in the two relations match, and
what attributes are present in the result of the join.

 Join type – defines how tuples in each relation that do not match any
tuple in the other relation (based on the join condition) are treated.

©Silberschatz, Korth and Sudarshan3.59Database System Concepts, 5th Ed., June 2006

Joined Relations – Datasets for Examples

 Relation loan

 Relation borrower

 Note: borrower information missing for L-260 and loan
information missing for L-155

©Silberschatz, Korth and Sudarshan3.60Database System Concepts, 5th Ed., June 2006

Joined Relations – Examples

 loan inner join borrower on
loan.loan_number = borrower.loan_number

 loan left outer join borrower on
loan.loan_number = borrower.loan_number

©Silberschatz, Korth and Sudarshan3.61Database System Concepts, 5th Ed., June 2006

Joined Relations – Examples

 loan natural inner join borrower

 loan natural right outer join borrower

©Silberschatz, Korth and Sudarshan3.62Database System Concepts, 5th Ed., June 2006

Joined Relations – Examples

 loan full outer join borrower using (loan_number)

 Find all customers who have either an account or a loan (but not both)
at the bank.

select customer_name
from (depositor natural full outer join borrower)
where account_number is null or loan_number is null

The picture can't be displayed.

Database System Concepts, 5th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

End of Chapter 3

©Silberschatz, Korth and Sudarshan3.64Database System Concepts, 5th Ed., June 2006

Figure 3.1: Database Schema

branch (branch_name, branch_city, assets)

customer (customer_name, customer_street, customer_city)

loan (loan_number, branch_name, amount)

borrower (customer_name, loan_number)

account (account_number, branch_name, balance)

depositor (customer_name, account_number)

©Silberschatz, Korth and Sudarshan3.65Database System Concepts, 5th Ed., June 2006

Figure 3.3: Tuples inserted into loan and
borrower

©Silberschatz, Korth and Sudarshan3.66Database System Concepts, 5th Ed., June 2006

Figure 3.4:
The loan and borrower relations

